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(Received 30 May 1997) 

Variational principles and estimates are obtained for the stiffnesses of non-homogeneous plates of periodic structure, which arise 
from the asymptotic method of analysing the problem of the theory of elasticity in regions of small thickness [1]. © 1999 Elsevier 
Science Ltd. All rights reserved. 

1 .FORMULATION OF THE PROBLEM 

Consider an elastic solid of periodic structure, which occupies a region of small thickness e (Fig. 1). 
The characteristic size of a periodicity cell P~ of the solid in the Ox~x2 plane is also of the order of e. 
The elasticity constants aiykt (X/Z) of the solid are functions of the argument x, and are periodic in Xl, 
X 2 Eel .  

We know [1] (for the case of a flat plate [2]), that as e ~ 0 the solution of the problem of the theory 
of elasticity for the solid described tends to the solution of the plate-theory problem with the governing 
equations 

0 I N~ = A ~ e ~  + Aa~p,  ~ (1.1) 
i 2 M~=Aalh~e ~ + Aalh~p~; or, I~, ¥, 8 = 1, 2 

where N ~  and MQ~ are the forces and moments, eys, Prs are the strains in the plane of the plate and 
the curvatures, and A ~  (v, Ix = 0.1) are the stiffnesses of the plate (when v = Ix = i they are flexural 
and when v = Ix = 0 they are in the plane of the plate), calculated as follows [1, 2]. The so-called cell 
problem is solved, namely 

(aij/d(Y)/~kj v + (-1) v ai,~(y)y~).j= 0 in P1 (1.2) 

(ai/~y) ~ + (-1) v ai,~(y)y~, n) = 0 on Fi 

where the function W'SV(y) is periodic i n y l , y z  ~ P1 = 0/0)8). T h e  periodicity condition has the following 
meaning: F: is the free surface of the periodicity cell. The remaining part of the boundary of the 
periodicity cell, which we denote by F0, is the contact surfaces of the neighbouring periodicity cells. It 
is to these surfaces that the periodicity condition applies. 

We will calculate the stiffness from the formula 

A~ =((-l)"y~(a~(y)Nk~t +(-I) vy~'(a~16(y)) ) (i.3) 

((.) = 1/mesSa J pfdy is the average of P1 = e-:P~ = {y = X/e : x e P~} over the periodicity cell in 
dimensionless coordinates y = x/e and S1 is the projection of P1 onto the Oyy2 plane). 

We will concentrate our investigation on the stiffnesses and will pay particular attention to the flexural 
stiffnesses. 

A formula was derived in [2, formula (6.27)] for fiat plates, which can be written as follows: 

A ~  = (auta(y)(N~ l - y 3 8 ~ S t s ) ( N ~  1 - y38~tS.~)) (1,4) 

2 ( ~  = 1 and 50 = 0 when i ,  j). It represents A aBr6 in the form of a quadratic functional, which is 
convenient for obtaining variational principles. - 

We will verify that formula (1.4) remains true for plates with non-flat surfaces (for example, for ribbed, 
corrugated, etc. surfaces). To do this we will show that (1.4) is a corollary of relations (1.2) and (1.3). 
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Fig. 1. Fig. 2. 

We multiply the equation from (1.2) byN/up1 and integrate the result by parts on P1, taking the remaining 
conditions from (1.2) into account. We obtain the equation 

0 = (a#~.t (y)(N~ ! - y38~6. )N/ t~ j  ' ) (1.5) 

Subtracting this equation from (1.3) with v = I~ = 1 we obtain (1.4). 

2 VARIATIONAL PRINCIPLES AND ESTIMATES 
FOR FLEXURAL STIFFNESSES 

To obtain the variational principles for stiffnesses we will establish a relation between the cell problem 
(1.2), its Lagraage~and Castigliano functionals [3, 4] and the stiffnesses (1.4) (the prototype of this method 
has been described previously for beams in [5]). We set up the Lagrange functional J,(u) for problem 
(1.2). It has the form [3, 4] 

and is considered on the set of possible displacements 

V = {u(y) E HI(P1): u(y) is periodic in Yl, Y2 e P! } (2.2) 

We can obtain the Castigliano functional by considering the problem that is the dual of the problem 
of maximizing Ju(u) on V. The functional of the dual problem can be calculated in the same way as that 
described previously [4, Chapter 7, Section 4] with a single change due to the condition of periodicity 
in definition (2.2)(it changes the condition of rigid clamping from [4]). 

For the case considered (using the notation used previously [4]) we will put~ = -(aijvs(Y)Y3).j in P1-- 
the mass forces and gi = airts(Y) y3nj on Fl--the surface stresses. We now calculate F*(-A*6) in the 
same way as previously [4, Chapter 7, Section 4] and we obtain the equations 

otj, j +,6 = 0 in P1, oi,~j - gi = 0 on Fi (2.3) 

For functions which satisfy conditions (2.3) we have Au = (vi, j + vj,/)/2--the strains. Here 10 e V and 
u = 0 on F1. For smooth functions 

(¢lijnj,° i) = ~[~#ni]u ia~ (2.4) 
. f  

The square brackets denote the difference in the values of the function on opposite faces of the 
periodicity cell (Fig. 2). When obtaining formula (2.4) we took into account the fact that the values of 
the function v e V are equal on these faces. From (2.3) we obtain, in the notation used previously in 
[4, Chapter 7, Section 4] 

0, if (oij -ai~(Y)Y3),I =0 in P~ 

._~ J(ff# -a#,la(y)y3)n j =0 on r" l 
F * ( - K  ~,~=~ . _ (2.5) 

| [ o0 ,  j I = u on 7 
[+** in the remaining cases 
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The last equation in (2.5) means the periodicity of o ~ j  in Yl, Y2 e Pv  

Remark 1. The elasticity constants aqkt(Y) are periodic in Yl, Y2 ~ Pt, and hence the periodicity conditions 
(aij - acts(Y) y3)nj and a# j  in Yl, Y2 ¢ P1 are equivalent. 

We will introduce the set of permissible stresses 

Z = 100 e/,(Pl) :(OU -oo~(Y)Y3),j = 0 in ~,  (o# -a#~ (y)y3)n/= 0 on F 1, 

(Oq -ao~e(y)y3)n j are periodic in Yl, Y2 e Pt} 
(2.6) 

The Castigliano functional J~(o) ( -G*( -o ) )  in the notation used previously in [4, Chapter 7, Section 
4] has the form 

(2.7) 

where a~t is a tensor, inverse to aijkl, and by virtue of the results obtained previously [4, Chapter 7, 
Proposition 4.1 and Chapter 3, Theorem 4.1], the following relation is satisfied 

maxJ,,(u)= rain J~(o') 
uGV oUe.r 

(2.8) 

Remark 2. To obtain (2.8) using the above-mentioned theorems from [4] it must be borne in mind that for the 
function u ~ V, which satisfies the condition (u) = 0, for the functional J~(u) the Korn inequality [6] is satisfied, 
in view of which the conditions of Theorem III. 4.1 [4] are satisfied on II0 = {u ~ V : (u) = 0}, and by virtue of 
this equality, (2.8) holds on V0. But since J,(u) cannot change its value when the body is displaced as a solid whole, 
relation (2.8) also holds for any u ~ V. 

We will now consider formula (1.4). When ¢tl3 = ,/8, v = rt = 1 it takes the form 

A ~  = (aat~(Y)Y~)- 2,J,,(u) (2.9) 

Here  we have taken relation (2.1) into account. 
Cell problem (1.4) is Euler's equation for the problem of maximizingJu(u) on V. Its solution is unique 

on V0 [6]. Then if we take Remark 2 into account, N ~131 solves the minimization problem given above. 
Bearing this in mind, from (2.7) and (2.9) we obtain 

( a ~ ( y ) y 2 ) -  2m~ J.(u) = ~ ( a ~ ( y ) y 2 )  - 2 min Ja(O) 
~ "  - u e v  o o ~iZ 

(2.10) 

which are two variational principle (in the strains and in the stresses) for the flexural stiffnesses of a 
non-homogeneous plate of periodic structure. 

For arbitrary u e  V, oq e Y. from (2.11) we obtain an estimate of the upper and lower bounds for the 
stiffnesses 

( a ~ ) y ~ ) -  2J . (u )~ '  A ~  ~ (a( , l~(J ' )y~)-  2Je(O) (2.11) 

3. E X A M P L E S  

3.1. The vatiational principle in stresses on a set that is independent of the elasticity constants. Consider the variational 
principle in stresses. It is convenient to write it in terms of the quantities ob = a 0 --aors(y)y3. Using Remark 1, we 
obtain from (2.10) 

oueZl - - ~ i 

~" (a~(y)o~o~a + 2o~y3) for any o;)E ~:" 
(3.1) 

where 

Y' =lo 0 e/.,(/D: oO. j = 0 in/1, o0n/= 0 on l" I, o0n j is periodic in Yt,Y2 e/ll } (3.2) 
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The set ~'  (3.2) describes the equilibrium stresses in P~ with the corresponding boundary conditions. Here Y-' is 
independent of the elasticity constants. In particular, we can take as Y.' the stresses corresponding to the solutions 
of  cell problem (1.4) with any elasticity constants, for example, solutions for a plate of homogeneous material. 

3.2. The upper limit. Assuming u = 0 in (2.11), we obtain 

~ (a~t~o(Y)Y 2) (3.3) 

3.3.An estimate based on stresses in homogeneous plates with flat surfaces. We will use relation (3.1) and the remark 
to it. In homogeneous plates with fiat surfaces for bending c ~  ¢ 0 (ctct = 11.22), while the remaining ~1~ = 0. 
Obviously, stresses of this form belong to E'. Consider the case when ct = 13 = 1--the flexural stiffnessA2m. The 
expression on the right-hand side of (3.1) for an isotropic material takes the form 

-1  "2 -1  ,2 - I  ' • ' 
('-alm(Y)%l - a22220')a22- 2allZZ(Y)a11~ + 2%!Y3) (3.4) 

Since the fact that they belong to E' does not impose any constraints on q'i, trY2, we can maximize expression 
(3.4) with respect to dH,  d22. Euler's equation in this case has the form 

-1  , -1  , 
" a l l l l ( ; l l  - -  a 1122¢I22 + Y3 = 0 

-1 , - I  , 
--o11220"11 - a 2222G22 = 0 

Taking into account the relations a~11 ---- a-12222 = l/E, a1~22 = -~/E (E and v are Young's modulus and Poisson's 
ratio) we obtain for an isotropic material 

_.~Jx+ vo~2 +y3 =0, v~h - a22 =0  (3.5) 
E E E E 

The solution of (3.5) is 

a~  = Fkv), a~2 =-vCy)&v); &v) = eC.v)yy(l - v2(.v)) 

Note that this is the exact value of the stresses for homogeneous and multilayered plates [1, 7]. 
Substituting the stresses obtained into (4.2) we have 

• e( )" / e(y)yl \ 
(3.6) 

The fight-hand side of this estimate corresponds to the classical formula for calculating the stiffnesses of 
homogeneous and multilayered plates. For other types of the plates (3.6) is an upper limit. Here E(y) and'f (y) can 
depend in an arbitrary way on y. In particular, the estimate can be used for the case of  perturbations of the layer 
geometry in a plate with a multilayered structure [8]. The fact that the stiffness of a multilayered plate with ideal 
layers gives minimum stiffness agrees with the fact that, in the corresponding formulae from [8], there is no linear 
term in the expansion of the stiffness in a series of perturbation theory. 

Note that it follows from the fact that the right-hand side of (3.6) is identical with the stiffness of a plate with 
ideal layers, that a plate with non-flat layers will have a greater stiffness. 

Thus, of the plates shown in Fig. 3, plate b has greater stiffness than plate a. 
According to (3.3) 

~ [  E(y)(I-v(y))Y2 ~ 
A2111 \(1 + v(y))(1- 2v(y))[ 

The difference between the upper and lower limits when v = 0.3 for all components is - 0.8 E0,)y j. 

3.4. Unidirectionalplates. Suppose the region occupied by the plate has the form of a cylinder with directrix O y  1 

(Fig. 4). In this case nl = 0 on Fl- - the  free surface of the periodicity cell and stresses of the form Cql ~ 0, 
o b -- 0 when ij ~ 11 belong to Y.' for any a~l. Then, relation (3.1) for ct = 13 = 1 (the stiffness in the direction of 
the Oyl axis) takes the form 

- I  t2 
( - a l l  I I ( Y ) O I I  + 2 0 ~ 1 Y 3 )  (3.7) 

, r 1 It follows from Eulers  equation for (3.7) that o1~ ~ -yCa~m. Substituting this quantity into (3.7) and 
taking into account the fact that for isotropic materials a i m  = 1/E, we obtain the estimate 
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Ai21ti ;B (E(y)y3 2) (3.8) 

3.5.An estimate of the st~fness in terms of the solution in the "inner" region. Consider the stiffness to bendingA22222 
(in the Oy2 direction) for a plate of the type shown in Fig. 4. It is clear from the mechanical point of view that in 
this direction the ribs have only a small effect on the bending, while a lower limit of the stiffness is given, for example, 
by the stiffness of the horizontal layer, shown hatched in Fig. 3. This can be shown rigorously from the limits in 
stresses. 

Suppose P c P1 is a subregion of the periodicity cell in which the following relations are satisfied 

o ij, j =0  in "P 

¢Jonj = 0 on S - the part of OP, which do not intersect r 0 

tlijn j are periodic in Yl, Y2 e P1 

(3.9) 

(3.10) 

(3.11) 

We define 

= Ioij in P 

°k / oin ~1~' 

The function introduced c/~ e Z'. In fact, for any function v e D*(P1) (the set of infinitely differentiable finite 
functions on P1 [9]) in view of (3.9), (3.10) and the formula for integration by parts, we have 

I °~ i . jdy+l  °~in~vldy=O (3.12) 
e~ s 

where S is the part of the boundary of P defined in (3.10). The second integral in (3.12) is equal to zero, by virtue 
of which o'ij, j = 0 in P1. The remaining conditions regarding belonging to X' are satisfied automatically. 

As an example, consider a wafer plate, having two systems of ribs, directed along the Oyl and Oy 2 axes. A plate 
with any of these systems of ribs is imbedded in the initial one and is cylindrical. As a consequence of this, estimate 
(3.8) is satisfied for the stiffnesses of the wafer plate A2111 and A2222 . 

3.6. Random structures. In bodies with a random structure, of the conditions introduced above, which are imposed 
on the permissible strains and stresses, one is not satisfied, namely, the periodicity condition. Consider a typical 
fragment of a random structure as the periodicity cell and repeated periodically. We obtain a plate with a periodic 
structure. From the mechanical point of view we would expect the initial plate and the plate obtained to be identical 
if the random distribution is spatially homogeneous and the chosen fragment is sufficiently large compared with 
the inhomogeneities (the "representative" fragment). The variational principles hold for a periodic medium. We 

(a) 

1 
Fig. 3. 

(b) 

Fig. 4. 



638 A.G.  Kolpakov and I. G. Sheremet 

would wish to dispense with the periodicity condition. Such a method exists at the level of mechanical justification. 
It follows from the previous discussion that the local stresses must be periodic and they should, on average, be 
identical with the global stresses. But the latter are periodic (since they are simply constant) in the "representa- 
tive" fragment. Hence, from the mechanical point of view the periodicity condition can be replaced by the condition 
that the mean value of the local stresses (or strains) should be identical with the global stresses (or strains), taking 
their type into account--global bending. Making this replacement we arrive at extension of the Nemat- 
Nasser-Hori variational principle [10] to the plate. 

4. THE STIFFNESSES IN THE PLANE OF THE PLATE 

Above we considered the case that is fundamental for plates, namely, the estimate of the flexural 
stiffnesses. Similar estimates can be obtained for the stiffnesses in the plane of the plate A°~l~. To do 
this, we must put v = ~t -- 0 in the calculations carried out above in Section 1, while in Section 2 we 
must omit the factor Y3 at the appropriate places. These actions lead to a variational principle of the 
form (2.10) but in this case 

1 
s ,  (u)  = (aij (y)ui,j) - (Y)U juk.i) 

1; = {ty/j ~ L(PI): (oij - a/~(y)),j = 0 in Pi, 

(t~ij - a~j~(y))n~ = 0 on FI, 

o0n j are periodic in Yl, Y~ e P~ } 

(4.1) 

Variational principle (3.1) takes the following form for the case considered 

A o  _ - I  , , - ma,x ( -a i~ t ( y ) f fUo~  + 2t~t~)  (4.2) 

J~(a) and Z' are the same as before. 
The following estimates for the stiffnesses in the plane of the plate are analogues of the estimates 

obtained in Section 3 

A ~  ~ ( a ~ ( y ) )  for any type of plate 

/ \ 
AOl|| ~ \ ~ ]  for plates with plane faces 

A°l t l ~ (E(y)) for unidirectional plates 

For plates with a random structure we also arrive in this case at a Nemat-Nasser-Hori type variational 
principle in respect of the strains in the plane of the plate. 

5. MIXED ( A S Y M M E T R I C A L )  STIFFNESSES 
1 , ,  , ,  The st i ffnessesAa~ are compensators of the stiffnessesAv+~a~la[3 (v + ~ = 0.2) when the local 

system of coordinates is changed in the following sense. The solution of the plate-theory problem does 
not depend on the "attachment" of the local system of coordinates (namely, the plane Y3 = 0) to the 
periodicity cell P~, but A ~  depend on it, see (1.2) and (1.3). This dependence is compensated by 
the change in A~fk~13. The specific form of this dependence was investigated elsewhere. Here it is 

1 v + p  important to consi~er directly the connectedness ofA~a~ a n d A ~  (v + ~ = 0.2) and the reference 
plane Y3 = h. 

Consider the functional 

h 1 (a (yXy3 + (5.1) 

where h is an arbitrary non-zero number. 
The solution of the problem 
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x~ 

~ ~  

x~ 

Fig. 5. 

/~(u) ~ max, u • V (5.2) 

as can easily be verified, is 

N~ = - N ~  I + hN "~6° (5.3) 

where N ~v (v = 0, 1) is the solution of cell problem (1.2). 
Substituting (5.3) into (5.1) we obtain 

+ ~ ( a ~  (y)y3) + ~ ( a ~  (y)) - 

- l ( - 2 a ~ ( y ) N ~ '  + 2ai~(y)y3Ni~ j -al/kt(Y)N~°N~ ' +aiita(y)Ni~/ Nk~.t °) (5.4) 

Here we have used the equations (see Sections 2 and 4) 

Jh(N~°~-. ' - - ~ ' h ~ l  ,o + l (a~(y) )  

the quantity Ju(IW~V)(v = 0, 1) is given by (2.1) and (4.1), respectively. 
From cell problem (1.2) we can derive the following equation (in the same was as (1.5) was derived) 

(5.5) (aijta (y)(Nkl~vt + (-1) v y~5~8~)Ni,~°~ • ) = 0 

Using (5.5) and taking into account the fact that, by definition (1.3) 

A ~  -- (a.~q~(y)y 3 - a . ~ ( y ) N ~  I ) = ( y 3 ( a ~ ( y )  + a~2 (Y)Nk,'~°t)) 

we obtain 

= + 1 ( a .~ (y )y~)+  T ( a . ~ ( Y ) ) -  h ~  + h(a~s(y)y3) (5.6) 

Taking into account the definition of N "rs as the solution of problem (5.2) we obtain the following 
variational principle from (5.6) 

( a .~ (y)y~)  + 2h(a~(y)y3)+h~(a~(y))-(A~ + 2 h ~  +h2A~)=mEa~v J~(u) (5.7) 
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The quantity on the right-hand side of (5.7) is equal to 

rain J , ( o )  (5,8) 
oq ~Iltt 

where Eh is obtained by replacingy3 b y y  3 + h in (2.6). Taking (5.8) into account we obtain the dual 
variational principle (in stresses). 

In this section we have obtained variational principles for the combination of stiffnesses . ~  (v + 
~t = 0.1) given on the left-hand side of (5.7). This corresponds to what was said at the beginning of this 
section. Since the stiffnesses of a plate in a plane and on bending are calculated (estimated) 
independently, (5.7) and (5.8) are the variational principle for mixed (asymmetrical) stiffnesses. 

6. A P P L I C A T I O N  O F  V A R I A T I O N A L  P R I N C I P L E S  T O  F I N I T E -  
D I M E N S I O N A L  S T R U C T U R E S  

The examples given in Section 3 refer to one of a number of types of plates. In this section we will consider one 
other form of plate, for which the use of variational principles is promising, namely, a plate of  complex structure 
[11, 12], the periodicity cell of which has a finite-dimensional construction. 

As an example we will consider a structure, elongated in the Oxrx2 plane, the periodicity cell of which is composed 
of rods (of the type shown in Fig. 5). This structure includes various types of open coverings (in the terminology 
generally employed [13], they can be characterized as "open meshes"). 

The displacements of  the nodes of the periodicity cell U are determined by the strain energy of the rods, in view 
of which the functional Ju(u) is expressed in terms of U 

J.(u) = J(u) (6.1) 

If the elements of  the periodicity cell are beams (i.e. their flexures play an important role), the introduction of 
generalized displacements V (including rotation of the nodes) also leads to an expression of the form (6.1). 

Minimizing (6.1) we obtain the stiffnesses of the open mesh. 
Practical methods of carrying out a finite-dimensional minimization are well developed [14]. The advantage of 

the proposed approach is that it is possible to avoid deriving the equilibrium equations, which is a non-trivial problem 
even for single-layer meshes [11]. 

In the general case, in particular for anisotropic plates, the effectiveness of the proposed method is similar to 
that of  traditional variational methods [14]. Whether effective estimates can be obtained depends on a successful 
choice of  the permissible strain or stress fields. In any case, we use the finite-elements method. The case of  rod 
(beam) structures discussed above is an example of the use of the finite-elements method. 
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